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Abstract 

 
We examine the time-series relationship between housing prices in Los Angeles, Las Vegas, and 
Phoenix. First, temporal Granger causality tests reveal that Los Angeles housing prices cause 
housing prices in Las Vegas (directly) and Phoenix (indirectly). In addition, Las Vegas housing 
prices cause housing prices in Phoenix. Los Angeles housing prices prove exogenous in a 
temporal sense and Phoenix housing prices do not cause prices in the other two markets. Second, 
we calculate out-of-sample forecasts in each market, using various vector autoregessive (VAR) 
and vector error-correction (VEC) models, as well as Bayesian, spatial, and causality versions of 
these models with various priors. Different specifications provide superior forecasts in the 
different cities. Finally, we consider the ability of theses time-series models to provide accurate 
out-of-sample predictions of turning points in housing prices that occurred in 2006:Q4. 
Recursive forecasts, where the sample is updated each quarter, provide reasonably good forecasts 
of turning points. 
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1. Introduction 

This paper considers the dynamics of housing prices and the ability of different pure time-series 

models to forecast housing prices in three Southwestern Metropolitan Statistical Areas (MSAs) – 

Los Angeles, Las Vegas, and Phoenix. Recent popular wisdom argues that residents of Southern 

California sell their local homes, cash out significant equities, and move (retire) to Las Vegas 

and Phoenix, where they significantly upgrade the quality of their homes. In fact, other Mountain 

Southwest MSAs may also respond to home prices in Los Angeles (and San Francisco). 

Recently, the Brookings Institution (2008) released a report on the rapid growth in the Mountain 

Southwest, identifying five megapolitan areas – Las Vegas, Phoenix, Denver, Salt Lake City and 

Albuquerque. 

Housing experts on the UK economy identified a “ripple” effect of housing prices that 

begins in the Southeast UK and proceeds toward the Northwest. Meen (1999) describes four 

different theories that may explain the ripple effect – migration, equity conversion, spatial 

arbitrage, and exogenous shocks with different timing of spatial effects. A ripple effect does not 

yet receive much support in the US economy. For example, most analysis relates to a given 

geographic housing market, such as a metropolitan area (Tirtirglou 1992; and Clapp and 

Tirtirglou 1994). More recent evidence across census regions also exists, which may reflect the 

fourth of Meen’s explanations (Pollakowski and Ray, 1997; Meen 2002). 

This paper first tests for cointegration between real house prices in the three MSAs, using 

the Johansen technique (1991). Given that we find one cointegrating relationship between the 

real house prices, the block exogeneity tests on the vector error correction (VEC) model reveal 

that housing prices in Los Angeles temporally cause prices in Las Vegas directly and Phoenix 
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indirectly, and that housing prices in Las Vegas temporally cause prices in Phoenix directly, but 

that Las Vegas and Phoenix housing prices do not temporally cause prices in Los Angeles.  

We next compare the out-of-sample forecasting performance of various time-series 

models – vector autoregressive (VAR), vector error-correction (VEC), and various Bayesian 

time-series models. For the Bayesian models, we estimate Bayesian VAR (BVAR) and VEC 

(BVEC) models as well as BVAR and BVEC models that include spatial and causality priors 

(LeSage 2004). A BVEC model performs the best across all three cities, although the forecasting 

performances in the individual cities do differ. That is, none of the cities perform the best in this 

BVEC model that performs the best across all three cities.  

We organize the rest of the paper as follows. Section 2 examines the relevant literature. 

Section 3 specifies the various time-series models estimated in Section 4. Section 5 concludes. 

2. Literature Review 

The literature review considers three different areas. First, we discuss housing dynamics and the 

various theories offered to explain those dynamics. Next, we describe the implications of 

housing dynamics on the time-series properties of housing prices. Finally, we consider the 

differences between dynamic structural models and time-series models in forecasting ability. 

Housing Dynamics: Observations and Theory 

We begin with the Law of One Price (LOOP), which states that a homogeneous good that sells in 

two different markets should sell for the same price, ignoring transaction and transportation 

costs. At the fundamental level, the operation of LOOP requires that the good is transportable 

between markets. Clearly, housing fails on at least two important fronts – housing is not 

homogeneous and is not transportable between markets. 
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Housing economists address the issue of a non-homogeneous good by appealing to the 

characteristics of housing. Hedonic models allow the researcher to compare housing prices based 

on the characteristics imbedded into the sales, such as number of bedrooms and baths and so on. 

Typically, the geographic reach of the housing market reflects the commuting shed for the 

metropolitan area. That is, houses compete with each other within the same metropolitan area. 

Tirtirglou (1992) and Clapp and Tirtirglou (1994) provided some of the earliest tests of whether 

the housing market exhibited efficiency in a spatial market in Hartford, Connecticut. 

Does the fact that we cannot transport houses from one metropolitan market to another 

necessarily mean that the markets do not exhibit some linkage? Borrowing from trade theory, we 

know that labor and capital frequently do not move between countries. Nonetheless, Samuelson 

(1948) shows that factor prices equalize, if goods and services flow freely between countries. 

That is, other flows between countries act as surrogates and cause the prices of labor and capital 

to equalize even though capital and labor do not move between countries. Since housing cannot 

flow between markets, migration of home buyers to purchase owner-occupied and non-owner 

occupied homes between metropolitan areas can link the housing markets. Moreover, home 

builders can shift their operations between metropolitan areas in response to differential returns 

on home building activity. 

Meen (1999) offers four different explanations of the “ripple” effect in the UK housing 

markets. As noted above, a tendency exists in the UK for housing price innovations in the 

Southeast part of the UK to transmit across geography to the Northwest. The basic theoretical 

model to explain the housing-consumption decision relies on a life-cycle model of household 

behavior (Meen, 1990). The life-cycle model assumes market efficiency, which clearly does not 

hold exactly in the housing market. Thus, the theoretical model reflects a long-run equilibrium 
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situation and practical implementation of the theory requires significant amounts of lagged 

(stock) adjustment effects. His explanations fall into the following categories: migration, equity 

conversion, spatial arbitrage, and exogenous shocks with different timing of spatial effects. 

Migration. The migration explanation requires that households move from one metropolitan area 

to another to take advantage of regional house price differences. This explanation does not offer 

a strong rationale in the UK, because regional migration flows prove weak at best. Migration 

patterns between Los Angeles (Southern California) and Las Vegas or Phoenix does exhibit the 

magnitude and direction of movement that could link Las Vegas and Phoenix prices to those in 

Los Angeles. But, what factors cause the migration in the first place? Migration may reflect 

several factors – lower housing prices in Las Vegas and Phoenix, significantly higher congestion 

in Los Angeles, faster economic growth may provide more valuable work possibilities in Las 

Vegas and Phoenix, and so on. 

Equity Conversion. A further explanation for migration may reflect the extra run up in housing 

prices in Los Angeles. Longer-term residents of Southern California may accumulate significant 

wealth in their home equity. In order to cash out that wealth, residents of Southern California 

must sell their home and move to a lower cost region where they can buy a similar quality house 

for a lower price and pocket the residual equity. Of course, the movement of home owners 

because of equity conversion inflates prices at the margin in the new residential areas where they 

drop anchor. 

Spatial Arbitrage. Rather than households moving to link the housing prices in different regional 

markets, investors could use spatial arbitrage to acquire properties in lower priced regions, where 

higher anticipated return on housing investment exist. In this case, financial capital moves 

between regions to link housing prices, rather than the migration of households. Pollakowski and 
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Ray (1997) find limited evidence of a spatial arbitrage (diffusion) effect across metropolitan 

regions in the US.  

Spatial Patterns of House Price Determinants. This argument really represents a non-theory of 

regional house price movements, or spurious correlation. That is, regional housing markets are 

independent. Nonetheless, if the determinants of housing prices in different regions experience a 

correlated movement, then housing prices will also exhibit the same correlated movement.  

Meen (1999) considers the possible explanations for a “ripple” effect in the UK. He relies 

on the life-cycle model of consumer choice. But, this leaves out an important factor in the 

housing market, the supply side. To discuss the role of the supply side, we can think of housing 

prices as including two components – construction (replacement) costs and land value.  

As we noted above, even though we cannot transport housing between regions, other 

factors can flow to link housing prices, such as migration of households or financial capital. 

Another possibility relates to factors of production. That is, if the demand for housing rises in 

one region, that will draw resources, including construction labor, from other regions. As a 

result, construction costs in both regions will rise. It rises first in the market where the demand 

for housing rises to attract more construction workers. And as a consequence, as the supply of 

construction workers in the other region falls, their wages will rise. The equalizing of 

construction costs tends to equilibrate housing prices across regions.  

Just as we cannot transport housing between regions, we cannot transport land as well. 

Thus, if a region faces a fixed, or extremely inelastic, supply of land, then that regions housing 

prices and land values will rise. That is, since housing prices include construction (replacement) 

costs and land prices, higher land prices will drive up housing prices even though construction 

(replacement) costs may equilibrate between regions. All three metropolitan areas in this paper 
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face land restrictions that respond in this manner. That is, all three regions experienced a housing 

“bubble” in recent years that deflated recently. See Figure 1. 

In sum we argue that the housing “bubbles” in Los Angeles, Las Vegas, and Phoenix 

reflect, in large measure, run ups and then crashes in land values. While other factors such as 

construction costs also played a role, lands values dominated the movement in home prices.  

Time-Series Implications for Housing Prices 

To the extent that housing prices follow a ripple effect between different geographic regions, 

then we should observe Granger temporal causality between regions. That is, price movements in 

one region should temporally precede price movements in another region. We perform temporal 

causality tests using a vector autoregressive (VAR) specification. On the other hand, if housing 

prices are I(1) series, exhibiting non-stationarity, then a long-run relationship between the 

housing prices may exist, especially if the ripple effect holds. As such, then the housing price 

series may exhibit cointegration and require the tests for Granger temporal causality to occur 

within a vector error-correction model (VEC). 

Dynamic Structural Versus Time-Series Models 

Two different approaches exist to modeling dynamic adjustment – dynamic structural and time-

series models. Zellner and Palm (1974) demonstrate that the two approaches are theoretically 

equivalent. That is, any dynamic structural model implicitly generates a series of univariate time-

series models for each endogenous variable. The dynamic structural model, however, imposes 

restrictions on the parameters in the reduced-form time-series specification. 

Dynamic structural models prove most effective in performing policy analysis, albeit 

subject to the Lucas critique. Time-series models prove most effective at forecasting. That is, in 

both cases errors creep in whenever the researcher makes a decision about the specification. 
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Clearly, more researcher decisions relate to a dynamic structural model than a univariate time-

series model, suggesting that fewer errors enter the time-series model and allowing the model to 

produce better forecasts. 

The “atheoretical” VAR and VEC models do not impose any exogeneity assumptions on 

the included variables. That is, lagged values of each variable may provide valuable information 

in forecasting each endogenous variable. VAR and VEC models, however, prove subject to over-

parameterization, since the number of parameters to estimate increases dramatically with 

additional variables or additional lags in the system. Bayesian VAR or VEC models economize 

on the number of parameters estimated by using a small number of hyper-parameters in the 

specification. 

3. VAR, VEC, BVAR, BVEC, SBVAR, and SBVEC Specification and Estimation1 

We can write an unrestricted VAR model (Sims, 1980) as follows: 

ε= + +0 ( )t t ty A A L y  (1),2        (1) 

where y equals a ( ×1n ) vector of variables to forecast; A(L) equals an ( ×n n ) polynomial matrix 

in the backshift operator L with lag length p, and ε  equals an ( ×1n ) vector of error terms. In our 

case, we assume that ε σ 2~ (0, )nN I , where In equals an ( ×n n ) identity matrix. 

Additional restrictions on the standard VAR model lead to a VEC model, designed for 

use with cointegrated non-stationary series. While allowing for short-run adjustment dynamics, 

the VEC model builds into the specification the cointegration relations so that it restricts the 

long-run behavior of the endogenous variables to converge to their long-run relationships. The 

                                                 
1 The discussion in this section relies heavily on LeSage (1999), Gupta and Sichei (2006), and Gupta (2006). 
2 A(L) = + + +2

1 2 ... p
pA L A L A L ; and 0A  equals an ( ×1n ) vector of constant terms. 
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cointegration term, known as the error correction term, gradually corrects through a series of 

partial short-run adjustments. 

More explicitly, assume that the n time series variables in ty  are integrated3 of order one, 

(i.e., I(1)).4 The error-correction counterpart of the VAR model in equation (1)  converts into a 

VEC model as follows.5 

  
1

1 1
1

p

t t i t t
i

y y yπ ε
−

− −
=

∆ = + Γ ∆ +∑        (2) 

where  
1 1

[ ]and .
p p

i i j
i j i

I A Aπ
= = +

= − − Γ = −∑ ∑  

VAR models typically use equal lag lengths for all variables in the model, which implies 

that the researcher must estimate many parameters, some of which may prove statistically 

insignificant. This over-parameterization problem can result in multicollinearity and a loss of 

degrees of freedom, leading to inefficient estimates, and possibly large out-of-sample forecasting 

errors. Often, researchers simply exclude lags with statistically insignificant coefficients. 

Alternatively, researchers use near VAR models, which specify unequal lag lengths for the 

variables and equations. 

Litterman (1981), Doan et al., (1984), Todd (1984), Litterman (1986), and Spencer 

(1993), use a Bayesian VAR (BVAR) model to overcome the over-parameterization problem. 

Instead of eliminating lags, the Bayesian method imposes restrictions on the coefficients across 

different lag lengths, assuming that the coefficients of longer lags may prove nearer zero than the 

coefficients on shorter lags. If, however, stronger effects come from longer lags, the data can 

                                                 
3  A series is integrated of order q, if it requires q differences to transform it into a zero-mean, purely non-
deterministic stationary process. 
4  See LeSage (1990) and references cited therein for further details regarding the non-stationarity of most 
macroeconomic time series. 
5 See Dickey et al. (1991) and Johansen (1995) for further technical details. 
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override this initial assumption. Researchers impose the restrictions by specifying normal prior 

distributions with zero means and small standard deviations for most coefficients, where the 

standard deviation decreases as the lag length increases. The first own-lag coefficient in each 

equation proves the exception with a mean of unity. Finally, Litterman (1981) uses a diffuse 

prior for the constant. Researchers popularly refer to this as the “Minnesota prior,” due to its 

development at the University of Minnesota and the Federal Reserve Bank at Minneapolis. In 

our analysis, we implement a Bayesian variant of the Classical VEC model based on the 

Minnesota prior. 

Formally, as discussed above, the means and variances of the Minnesota prior take the 

following form: 

ββ σ 2~ (1, )
ii N  and ββ σ 2~ (0, )

jj N       (3) 

where βi  denotes the coefficients associated with the lagged dependent variables in each 

equation of the VAR model (i.e., the first own-lag coefficient), while β j  represents any other 

coefficient. In sum, the prior specification reduces to a random-walk with drift model for each 

variable, if we set all variances to zero. The prior variances, 2
βσ i

 and 2
βσ j

, specify uncertainty 

about the prior means βi  = 1, andβ j  = 0, respectively.  

Doan et al., (1984) suggest a formula to generate standard deviations as a function of a 

small numbers of hyper-parameters: w, d, and a weighting matrix f(i, j) to address the over-

parameterization in the VAR model. This approach allows the forecaster to specify individual 

prior variances for a large number of coefficients based on only a few hyper-parameters. The 

specification of the standard deviation of the distribution of the prior imposed on variable j in 

equation i at lag m, for all i, j and m, equals S1(i, j, m), defined as follows: 
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= × ×1

ˆ
( , , ) [ ( ) ( , )]

ˆ
i

j

S i j m w g m f i j σ
σ

,      (4) 

where f(i, j) = 1, if i = j and ijk  otherwise, with ( ≤ ≤0 1ijk ), and g(m) = −dm , with d > 0. Note 

that σ̂ i  equals the estimated standard error of the univariate autoregression for variable i. The 

ratio σ σ
ˆ
ˆ

i

j
 scales the variables to account for differences in the units of measurement and, 

hence, causes specification of the prior without consideration of the magnitudes of the variables. 

The term w indicates the overall tightness and equals the standard deviation on the first own lag, 

with the prior getting tighter as we reduce the value. The parameter g(m) measures the tightness 

on lag m with respect to lag 1, and equals a harmonic shape with decay factor d, which tightens 

the prior on increasing lags. The parameter f(i, j) represents the tightness of variable j in equation 

i relative to variable i, and by increasing the interaction (i.e., the value of ijk ), we loosen the 

prior.6  

The overall tightness (w) and the lag decay (d) hyper-parameters equal 0.1 and 1.0, 

respectively, in the standard Minnesota prior, while ijk  = 0.5, implying a weighting matrix (F) of 

the following form for our three city example of Los Angeles, Las Vegas, and Phoenix: 

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1.0 0.5 0.5
0.5 1.0 0.5
0.5 0.5 1.0

F .       (5) 

Since researchers believe that the lagged dependant variable in each equation prove most 

important, F imposes βi =1 loosely. The β j coefficients, however, that associate with less-

important variables receive a coefficient in the weighting matrix (F) that imposes the prior means 

                                                 
6 For an illustration, see Dua and Ray (1995). 
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of zero more tightly. Given that the Minnesota prior treats all variables in the VAR, except for 

the first own-lag of the dependent variable, in an identical manner, several attempts exist that try 

to alter this fact. Usually, this boils down to increasing the value for the overall tightness (w) 

hyper-parameter from 0.10 to 0.20, so that the larger value of w allows more influence from 

other variables in the model. In addition, Dua and Ray (1995) propose a prior with less 

restrictions on the other variables in the VAR model, specifically with w = 0.30 and d = 0.50. 

Alternatively, LeSage and Pan (1995) suggest constructing spatial BVAR (SBVAR) and 

BVEC (SBVEC) models. They propose the weight matrix based on the first-order spatial 

contiguity (FOSC) prior, which simply implies a non-symmetric F matrix that gives more 

importance to variables from neighboring states/cities than those from non-neighboring 

states/cities. They propose using unity both for the diagonal elements of the weight matrix, as in 

the Minnesota prior, as well as for place(s) that correspond to variable(s) from state(s)/city(ies) 

with which the specific state in consideration shares common border(s). For the elements in the F 

matrix that correspond to variable(s) from state(s)/city(ies) that are not immediate neighbor(s), 

Lesage and Pan (1995) adopt a weight of 0.1. In sum, some of the 0.5 weights in the 

specification shown in (4) become 1.0 for neighbors and 0.1 for non-neighbors.  

In our specific example of Los Angeles, Las Vegas, and Phoenix, we could argue that 

each city neighbors the other cities or does not neighbor the other cities. Thus, the coefficients of 

0.5 either change to 1.0 or to 0.1. If we assume that the cities all neighbor each other, then the F 

matrix becomes the following:  

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1.0 1.0 1.0
1.0 1.0 1.0
1.0 1.0 1.0

F .        (6) 

We also propose new specifications called causality BVAR (CBVAR) and BVEC 
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(CBVEC) models, where the weight matrix depends on tests for Granger temporal causality –- 

the temporal causality (TC) prior. This modification of the LeSage and Pan (1995) first-order 

spatial-contiguity (FOSC) prior considers some neighbors as more important than other 

neighbors. In fact, non-neighbors may exert more influence than neighbors. If one city’s home 

prices temporally cause another city’s home prices, then we code the weight matrix for that off-

diagonal entry at 1.0. If no temporal causality exists, then we code the off-diagonal entry as 0.1. 

We hypothesize a hypothetical F matrix under a temporal causality prior as follows: 

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1.0 0.1 0.1
1.0 1.0 0.1
1.0 1.0 1.0

F .        (7) 

In this specification, the first city’s (Los Angeles) home prices temporally cause home prices in 

Las Vegas and Phoenix. Then the second city’s (Las Vegas) home prices temporally cause the 

third city’s (Phoenix) home prices. 

More recently, LeSage and Krivelyova (1999) develop an alternative approach to remedy 

the equal treatment nature of the Minnesota prior, called the “random-walk averaging” (RWA) 

prior. As noted above, most attempts to adjust the Minnesota prior focus mainly on alternative 

specifications of the prior variances. The RWA prior requires that both the prior mean and 

variance incorporate the distinction between important variables, neighbors and non-neighbors, 

for each equation in the VAR model. Now the neighbors receive a weight on 1.0 and non-

neighbors receive a weight of 0.0. 

Consider the weight matrix F for the VAR model consisting of house prices of the three 

metropolitan areas. The weight matrix contains values of unity in each position (i.e., the home 

price in each city proves important), while no city receives a zero values, since all cities are 

neighbors. In addition, we continue with 1.0 down the main diagonal of the F matrix, to 
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emphasize the importance of the autoregressive influences from the lagged values of the 

dependant variable (house price of a specific metropolitan area).7 In sum, the weight matrix F in 

our application remains as shown in equation (6). 

We then standardize the weight matrix in equation (6) so that each row sums to unity. 

Formally, we write the standardized F matrix, called C, as follows: 

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

0.33 0.33 0.33
0.33 0.33 0.33
0.33 0.33 0.33

C .       (8) 

We can interpret the C matrix as generating a pseudo random-walk process with drift, 

where the random-walk component averages across the important variables in each equation i of 

the VAR. Formally, 

3

1
1

it i ij jt it
j

y C y uδ −
=

= + +∑ , i = 1, 2, and 3.     (9) 

Expanding equation (9), we observe that by multiplying 1jty − ,containing the house prices of the 

three metropolitan areas at t-1, with C produces a set of explanatory variables for the VAR equal 

to the mean of observations from the important variables (neighboring house prices) in each 

equation i at t-1.8 This also suggests that the prior mean for the coefficients on the first own-lag 

of the important variables equals 1
ic , where ic  (=3) equals the number of important variables in 

a specific equation i of the VAR model.9  

                                                 
7 Using 1.0 on the main diagonal of the F matrix for the RWA prior, however, does not always prove obvious. 
LeSage and Krivelyova (1999) provide the exposition for when the autoregressive influences do not influence 
importantly certain variables.  
8 Just as with the constant in the Minnesota Prior, δ is also estimated based on a diffuse prior. 
9 As in the Minnesota prior, the RWA prior uses a prior mean of zero for the coefficients on all lags, except for the 
first own lags. The RWA approach of specifying prior means requires that the researcher scale the variables to 
similar magnitudes, since otherwise it does not make intuitive sense to say that the value of a variable at t equals the 
average of values from the important variables at t-1. This issue does not affect our analysis, since our variables are 
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In sum, the prior variances for the parameters under the RWA prior, as proposed by 

LeSage and Krivelyova (1999), retaining the distinction between important and unimportant 

variables, require the following ideas: 

(i) Assign a smaller prior variance to parameters associated with unimportant variables, 

imposing the zero prior means with more certainty; 

(ii) Assign a small prior variance to the first own-lag of the important variables so that the 

prior means force averaging over the first own-lags of such variables;   

(iii) Impose the prior variance of parameters associated with unimportant variables at lags 

greater than one such that it becomes smaller as the lag length increases, imposing decay 

in the influence of the unimportant variables over time; 

(iv) Assign larger prior variances on lags other than the first own-lag of the important 

variables important variables, allowing those lags to exert some influence on the 

dependant variable; and  

(v) Finally, impose decreasing prior variances on the coefficients of lags, other than the first 

own-lag of the important variables.  

Thus, in the specification of the RWA, as in the Minnesota prior, longer lag influences decay 

irrespective of whether we classify the variable as important or unimportant.  

Given (i) to (v), we adopt a flexible form, where the RWA prior standard deviations 

2 ( , , )S i j m  for a variable j in equation i at lag length m equal the following: 

2

2

2

1( , , ) ( , );     ;     1;             , 1,...., ;

( , , ) (0, );   ;     2,...., ;   , 1,...., ;  and

( , , ) (0, );   ;  1,...., ;   , 1,...., ;

c
i

c

c

S i j m N j C m i j nc

S i j m N j C m p i j nm

S i j m N j C m p i j nm

σ

ση

σρ

∈ = =

∈ = =

¬∈ = =

∼

∼

∼

  (10) 

                                                                                                                                                             
all scaled in the same fashion. 
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where 0 1cσ< < , 1η > , 0 1ρ< ≤ , and ic  equals the number of important variables in equation 

i. For the important variables in equation i (i.e., j C∈ ), the prior mean for the lag length of 1 

equals the average of the number of important variables in equation i, and equals zero for the 

unimportant variables (i.e., j C¬∈ ). With 0 1cσ< < , the prior standard deviation for the first 

own lag imposes a tight prior mean to reflect averaging over important variables. For important 

variables at lags greater than one, the variance decreases as m increases, but the restriction that 

1η >  allows for the loose imposition of the zero prior means on the coefficients of these 

variables. We use c
m

σρ  for lags on unimportant variables, with prior means of zero, to indicate 

that the variance decreases as m increases. In addition, since 0 1< ≤ρ , we impose the zero 

means on the unimportant variables with more certainty. In our model, however, we do not 

include any unimportant variables. 

We also propose a weighted random-walk averaging (WRWA) prior. That is, we extend 

the specification of LeSage and Krivelyova (1999) by assuming that the first own-lagged value 

proves more important than the other important variables (neighbors).10 We impose the condition 

that the first own-lagged variable proves twice as important as the other important variables.  

( )

( )

{ }

3

3

3

3

2( , , ) , ;   ;     1;       , 1,...., ;1

1( , , ) , ;   ;     1;       , 1,...., ;1

( , , ) 0, ;           ;     2,...., ;   , 1,...., ;  and

( , , )

c
i

c
i

c

S i j m N j C m j i i j nc

S i j m N j C m j i i j nc

S i j m N j C m p i j nm

S i j m

σ

σ

ση

⎧ ⎫ ∈ = = =⎨ ⎬+⎩ ⎭
⎧ ⎫ ∈ = ≠ =⎨ ⎬+⎩ ⎭

∈ = =

∼

∼

∼

∼ { }0, ;          ;   1,...., ;    , 1,...., .cN j C m p i j nm
σρ ¬∈ = =

 (11) 

                                                 
10 Kuethe and Pede (2008) specify a similar prior, where they assume that the coefficient of the own-lagged term 
equals one and the sum of the lags of the other important variables, not including the own-lagged term, sums to one 
as well. Thus, their weighting scheme doubles the weight as compared to our scheme as well as requiring the own-
lagged term to retain the coefficient of one, which reflects the essence of the random-walk averaging (RWA) prior. 
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Thus, in our three-variable system, ic  equals 3 and the prior means for the first own lag equals 

one half (i.e., ( )
2

1ic +  = ( )
2

3 1+ ) and the first lags of the other two important variables in 

each equation equal one fourth (i.e., ( )
1

1ic +  = ( )
1

3 1+ ). We employ the following values for 

the hyperparameters: 0.1, 8,and 0.5.cσ η ρ= = = 11 

We estimate the BVAR, BVEC, SBVAR, SBVEC, CBVAR, and CBVEC models, based 

on the FOSC, TC, RWA, and WRWA priors, using Theil's (1971) mixed estimation technique. 

Specifically, we denote a single equation of the VAR model as: = +1 1y Xβ ε , with 

ε σ= 2
1( )Var I . Then, we can write the stochastic prior restrictions for this single equation as 

follows: 

111 111 111 111

112 112 112 112

/ 0 . . . 0
0 / 0 . . 0

. . . . . . . . .

. . . . . . . . .

. 0 . . . . 0 . .
0 0 . . 0 /nnp nnp nnp nnp

r u
r u

r u

σ σ β
σ σ β

σ σ β

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (12) 

Note that 2( )Var u Iσ= , and the prior means ijmr  and the prior variance ijmσ 12 take the 

forms shown in equations (3) and (4) for the Minnesota prior; in equations (3), (4) and (6) for the 

FOSC prior; in equations (2), (3), and (7) for the TC prior, in equation (10) for the RWA prior, 

and in equation (11) for the WRWA prior. With equation (12) written as follows: 

r uβ= Σ + ,         (13) 

we derive the estimates for a typical equation as follows: 

                                                 
11 LeSage (1999) suggested ranges for the values for these hyperparameters. 
12 Note σ ijm  in equation (12) is a generic term used to describe Sk(i, j, m), k=1, 2, 3. 
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1
1

ˆ ( ' ' ) ( ' ' )X X X y rβ −= + Σ Σ +Σ       (14) 

Essentially then, the method involves supplementing the data with prior information on 

the distribution of the coefficients. The number of observations and degrees of freedom increase 

artificially by one for each restriction imposed on the parameter estimates. Thus, the loss of 

degrees of freedom from over-parameterization in the classical VAR or VEC models does not 

emerge as a concern in the BVAR, BVEC, SBVAR, SBVEC, CBVAR, and CBVEC models. 

4. Model Estimation and Results 

This section reports our econometric findings. First, we determine whether cointegration exists 

between the variables in our model. Second, we select the optimal model for forecasting each 

market’s housing price, using the minimum root mean square error (RMSE) for one- to four-

quarter-ahead out-of-sample forecasts. Finally, we examine the ability of the optimal forecasting 

models to detect turning points in our-of-sample forecasts. 

Evidence on Cointegration 

The first step in our analysis tests for Granger temporal causality between the three housing price 

series. Temporal causality tests emerge from VAR or VEC models. We first consider various 

lag-length selection criteria for the VAR specification, including the sequential modified 

likelihood ratio (LR) test statistic (each test at the 5-percent level), the final prediction error 

(FPE), the Akaike information criterion (AIC), the Schwarz information criterion (SIC), and the 

Hannan-Quinn information criterion (HQIC). All criteria choose four lags, except the Schwarz 

information criterion that chooses two lags. Table 1 reports the results. 

We next run the Johansen test for cointegration with four lags, we determine that the 

VAR model is not stable. Thus, we adopt the SIC and estimate with two lags, where we find that 

the VAR model is stable. Cointegration tests – the trace statistic and maximum eigen-value test – 
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both indicate one cointegrating vector. Table 2 tabulates the findings. 

Running the VEC specification and using the block exogeneity test, we discover that 

housing prices in Los Angeles temporally cause housing prices in Las Vegas and that housing 

prices in Las Vegas temporally cause housing prices in Phoenix.13 Further, housing prices in Las 

Vegas or Phoenix do not temporally cause housing prices in Los Angeles. In addition, housing 

prices in Los Angeles do not directly cause housing prices in Phoenix, but will exhibit an effect 

through Las Vegas and Las Vegas’s effect on Phoenix housing prices. Finally, housing prices in 

Las Vegas do not cause housing prices in Los Angeles. Table 3 reports the findings. We did not 

expect to find that housing prices in Los Angeles only directly cause housing prices in Las Vegas 

and that only Las Vegas’s housing prices directly cause housing prices in Phoenix. This result 

contradicted our prior beliefs, since we expected Los Angeles housing prices to cause Phoenix 

housing prices directly. 

One- to Four-Quarter-Ahead Forecast Accuracy 

Given the specification of priors in Section 2, we estimate numerous Bayesian, spatial, causality, 

and random-walk VAR and VEC models based on the FOSC, TC, RWA, and WRWR priors for 

Los Angeles, Las Vegas, and Phoenix over the period 1978:Q1 to 1995:Q4 using quarterly data. 

We then compute out-of-sample one- through four-quarters-ahead forecasts for the period of 

1996:Q1 to 2005:Q4, and compare the forecast accuracy relative to the forecasts generated by an 

unrestricted VAR and VEC models.14 Note that the choice of the in-sample period, especially, 

the starting date depends on data availability. The starting point of the out-of-sample period 

follows Rapach and Strauss (2007, 2008), who observe marked differences in housing price 

                                                 
13 Since the VEC specification constitutes the first differenced form of the three endogenous variables, and the 
optimal lag length used for the VAR is 2, we estimate all VEC models with 1 lag. 
14 Note that the initial estimation period does not include the dramatic run up in home prices at the end of the out-of-
sample forecast period. 
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growth across U.S. regions since the mid-1990s. Finally, we choose the end-point of the horizon 

as 2005:Q4, since we also use our alternative models to predict the turning point(s) in the real 

housing prices of these three MSAs and, hence, stop prior to the date where the turning point 

actually occurred. In our case, all three real house prices peaked in 2006Q4.  The models include 

house prices for the above mentioned three metropolitan areas. The nominal housing price data 

for the three MSAs come from the Freddie Mac. Using matched transactions on the same 

property over time to account for quality changes, the Conventional Mortgage Home Price Index 

(CMHPI) of the Freddie Mac provides a means of measuring typical price inflation for houses 

within the U.S. The Freddie Mac data consist of both purchase and refinance-appraisal 

transactions, and include over 33 million homes. We deflate the MSA-level nominal CMHPI 

housing price by the personal consumption expenditure (PCE) deflator from the Bureau of 

Economic Analysis (BEA) to generate our real housing price series. As Hamilton (1994, p. 362) 

notes, we seasonally adjust the data, since the Minnesota-type priors do not perform will with 

seasonal data.  

Each equation of the various VAR (VEC) models includes 7 (5) parameters with the 

constant, given that we estimate the models with 2 (1) lag(s) of each variable.15 We estimate the 

three-variable models for a given prior for the period 1978:Q1 to 1995:Q4, and then forecast 

from 1996:Q1 through to 2005:Q4. Since we use two lags, the initial six quarters from 1978:Q1 

to 1979:Q2 feed the lags. We re-estimate the models each quarter over the out-of-sample forecast 

horizon in order to update the estimate of the coefficients, before producing the 4-quarters-ahead 

forecasts. We implemented this iterative estimation and the 4-quarters-ahead forecast procedure 

                                                 
15 We initially chose 4 lags based on the unanimity of the sequential modified LR test statistic, the final prediction 
error (FPE), Akaike information criterion (AIC), and the Hannan-Quinn information criterion (HQIC). The Schwarz 
information criterion (SIC) provided the exception of 2 lags. The VAR model using 4 lags, however, proved unstable. 
Thus, we opted for the 2 lags indicated by the SIC, which generated a stable VAR. 
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for 40 quarters, with the first forecast beginning in 1996:Q1. This produced a total of 40 one-

quarter-ahead forecasts, …, up to 40 four-quarters-ahead forecasts.16 We calculate the root mean 

squared errors (RMSE)17 for the 40 one-, two-, three-, and four-quarters-ahead forecasts for the 

three home prices of the models. We then examine the average of the RMSE statistic for one-, 

two-, three-, and four-quarters ahead forecasts over 1996:Q1 to 2005:Q4. We follow the same 

steps to generate forecasts from the Bayesian, spatial, random-walk, and causality versions of 

VAR and VEC models based on the FOSC, TC, RWA, and WRWA priors.  

For the BVAR models, we start with a value of w = 0.1 and d = 1.0, and then increase the 

value to w = 0.2 to account for more influences from variables other than the first own lags of the 

dependant variables of the model. In addition, as in Dua and Ray (1995), Gupta and Sichei 

(2006), and Gupta (2006), we also estimate a BVAR model with w = 0.3 and d = 0.5. We also 

introduce d = 2 to increase the tightness on lag m. Finally, we specify σc=0.1, η=8, θ=0.5 for 

the random-walk models with the two different specifications for causality and spatial priors. We 

select the model that produces the lowest average RMSE values as the ‘optimal’ specification for 

a specific metropolitan area. 

Table 4, 5, and 6 report the findings for Los Angeles, Las Vegas, and Phoenix. Table 4 

reports the findings for Los Angeles. The last column looks at the average of RMSEs across the 

one-, two-, three-, and four-quarter-ahead forecast RMSEs. The spatial BVEC model with 

w=0.1, and d=2.0 provides the lowest average RMSE, which we identify as the optimal 

specification. This specification also minimizes the RMSE for the two-quarter-ahead forecasts as 

                                                 
16 For this, we used the algorithm in the Econometric Toolbox of MATLAB, version R2006a. 
17 Note that if t nA +  denotes the actual value of a specific variable in period t + n and t t nF +  equals the forecast made 

in period t for t + n, the RMSE statistic equals the following: ( )2
1
N

t t n t nF A
N

+ +
⎡ ⎤−∑
⎢ ⎥
⎢ ⎥⎣ ⎦

 where N equals the number 

of forecasts.  
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well. The BVAR model with w=0.2, and d=1.0 provides the optimal specification for the one-

quarter-ahead forecast, while the spatial RBVEC and causality RBVEC models with the first 

priors prove optimal for the three- and four-quarter-ahead-forecast horizon. 

Table 5 reports the findings for Las Vegas. The VAR specification provides the lowest 

average RMSE, as well as the lowest RMSE for the three- and four-quarter-ahead forecast 

horizon. The spatial BVEC model with w=0.1, and d=1.0 provides the optimal specification for 

the one-quarter-ahead forecast, while the causality RBVEC models with the second prior proves 

optimal for the two-ahead-forecast horizon. 

Table 6 reports the findings for Phoenix. The spatial RBVAR model with the second 

prior provides the lowest average RMSE, as well as the lowest RMSE for the two- and three-

quarter-ahead forecast horizon. The causality RBVAR model with the first prior provides the 

optimal specification for the one-quarter-ahead forecast, while the VAR model proves optimal 

for the three-quarter-ahead forecast horizon. 

In sum, different specifications yield the lowest RMSE in different cities.18 No common 

pattern emerges. Comparing the forecasting performance across cites, however, we see that Los 

Angeles experiences the lowest RMSE for the one-, two-, and three-quarter-ahead forecast 

horizon, while Las Vegas experiences the lowest RMSEs for the four-quarter-ahead forecast 

horizon and for the average across all four forecast horizons. 

Forecasting Turning Points 

Figure 1 illustrates that each housing market experienced a marked reversal of real housing 

prices after the peak in fourth quarter of 2006. We exposed our optimal forecast models to the 
                                                 
18 We also considered the specifications that produce the lowest average RMSE across all three cities (not reported, 
results available on request). The BVEC specification with w=0.1, and d=2.0 provides the optimal specification for 
the two- and four-quarter-ahead forecast horizon as well as for the average across all four horizons. The VEC 
specification proves the optimal model for the one-quarter-ahead forecast horizon, while the RBVEC specification 
with the second prior proves optimal for the three-quarter-ahead forecast horizon. 
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acid test – predicting turning points. We estimated the optimal models from Tables 4, 5, and 6 

using data through the fourth quarter of 2005 and then forecasted prices from the first quarter of 

2006 through the end of the sample period in the first quarter of 2008. The results of this 

forecasting experiment appear in Tables 7, 8, and 9. Table 7 reports the forecasting results for 

Los Angeles, where we used the spatial BVEC model with w=0.1, and d=2.0. Table 8 reports the 

forecasting results for Las Vegas, where we used the VAR specification. Finally, Table 9 reports 

the forecasting results for Phoenix, where we used the spatial RBVAR model with the second 

prior. 

Next, we re-estimated the optimal forecasting models through the first quarter of 2006 

and forecast the housing price in the second quarter of 2006 through the end of the sample. We 

continued to update the estimated model by adding data one quarter at a time and then 

forecasting out of sample. The recursive forecast results appear in Tables 10, 11, and 12. 

Tables 7, 8, and 9 report the ten-quarter-ahead forecasts of housing prices using the VAR 

and VEC models as well as the optimal BVAR and BVEC models for each city chosen from 

Tables 4, 5, and 6. With actual data that ends one-year ahead of the actual turning points for 

home prices in each city, none of the forecasting models forecasts a turning point in home prices. 

All forecasting models, however, use data that lies on the still rising portions of the “bubble” 

curves that we see in Figure 1. That is, it proves difficult to forecast a turning point when recent 

history shows a continuing rise in home prices. The recursive forecasts allow the forecaster to 

update the data set with new information, which we shall consider in due course.  

We use the best performing models from Tables 4, 5, and 6 in the findings reported in 

Tables 7, 8, and 9 – Los Angeles (BVEC), Las Vegas (VAR), and Phoenix (BVAR). We bold the 

forecast values in Tables 7, 8, and 9. For Los Angeles and Phoenix, the overall optimal forecast 
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model does the best of keeping the forecast price from rising too high. In other words, the 

deviations for the actual price are minimized when we use the optimal BVEC model to forecast 

Los Angeles prices and when we use the optimal BVAR model to forecast Phoenix prices. The 

Las Vegas numbers provide a different picture. Both the VEC and the optimal BVEC models 

produce smaller forecast errors from one to ten-quarters ahead than the VAR model. The optimal 

BVEC shows the best performance. The performance of the VAR model in Las Vegas  provides 

a different outcome, especially at longer out-of-sample forecast horizons. We return to this point 

below. 

Tables 10, 11, and 12 report the recursive forecasts. Once again, we employ the optimal 

models from Tables 4, 5, and 6 to generate the recursive forecasts – Los Angeles (BVEC), Las 

Vegas (VAR), and Phoenix (BVAR). The diagonal forecasts report the one-quarter-ahead 

forecast as we re-estimate the models by adding one quarter at a time. These one-step-ahead 

forecasts do reasonably well. In fact, the forecast prices peak in Las Vegas and Phoenix in the 

second quarter of 2006, two quarters before the actual series peak. This probably reflects the fact 

that in both Las Vegas and Phoenix, the forecasts begin to exceed the actual values by enough to 

cause the forecasts to attempt to close that overestimation gap. Less of a gap appears in Los 

Angeles and its forecasts do not peak until the fourth quarter of 2006, when the actual series 

itself peaks. 

The Los Angeles forecasts also prove interesting in that exactly when the price index falls 

in Los Angeles (i.e., 2007:Q1), the pattern of forecasts into the future fall monotonically (See 

Table 10, Forecast 5). Until this point, the future forecasts monotonically increased (See Table 

10, column 4). Las Vegas and Phoenix do not experience the same type of forecasting precision. 



 25

In Las Vegas, we observe this downward movement in future forecasts with data through 

2007:Q4 (See Table 11, Forecast 9). Phoenix never experiences this phenomenon. 

Given the anomalies in the forecasts for Las Vegas, we re-ran the recursive forecasts, 

using the regular BVEC model with w=0.1, and d=2.0. Table 13 reports the findings. The BVEC 

model performs better than the VAR model before the turning point in 2006:Q4 and that 

performance improves at longer forecasting horizons. After the turning point in home prices, 

then the VAR model general produces better forecasts than the BVEC model. 

5. Conclusion 

The bloom is off the rose of the housing boom. Housing prices rose dramatically in Los Angeles, 

Las Vegas, and Phoenix in the early 2000s, peaking in real terms in 2006:Q4. This paper 

considers the time-series relationships between the housing prices in these three MSAs, using 

Freddie Mac data from 1978:Q1 to 2008:Q1. First, we test for Granger temporal causality. 

Second, we generate out-of-sample forecasts using VAR, VEC and Bayesian, spatial, and 

causality VAR and VEC models with various priors. Finally, we explore the ability of these 

models to forecast turning points in housing prices that occurred in 2006:Q4. 

Los Angeles housing prices directly cause Las Vegas housing prices and indirectly cause 

Phoenix housing prices through their effect on Las Vegas housing prices. That is, Las Vegas 

housing prices directly cause Phoenix housing prices. Las Vegas housing prices do not cause Los 

Angeles housing prices and Phoenix housing prices do not cause housing prices in Las Vegas or 

Los Angeles. As a result, Los Angeles housing prices prove temporally exogenous. 

Different time-series models prove better at forecasting housing prices in the different 

MSAs. For Los Angeles, a spatial BVECs model provides the best forecasts. For Las Vegas, the 
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VAR specification provides the best forecasts. Finally, for Phoenix, a spatial RBVAR model 

provides the best forecasts. 

Forecasting turning points in housing prices proves a difficult task. When we estimate our 

model using data before the turning points in 2006:Q1, forecasts continue to predict a rising 

trend in housing prices and do not signal any turning point. When we update the data for the 

estimated model as new data become available, then we do forecast turning points with some 

degree of accuracy. The one-step-ahead forecasts do reasonably well. The forecast prices 

actually peak in Las Vegas and Phoenix in the second quarter of 2006, two quarters before the 

actual series peak. That is, in both Las Vegas and Phoenix, the forecasts begin to exceed the 

actual values sufficiently to cause the forecasts to attempt to close that overestimation. Less of a 

gap appears in Los Angeles and its forecasts do not peak until the fourth quarter of 2006, when 

the actual series itself peaks. 
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Table 1: Lag-Length Selection Tests 

 
 Lag LogL LR FPE AIC SIC HQIC 

0 445.6276 NA 9.11e-08 -7.697871 -7.626264 -7.668806 
1 1090.430 1244.749 1.44e-12 -18.75530 -18.46887 -18.63904 
2 1174.314 157.5557 3.91e-13 -20.05763 -19.55638* -19.85418 
3 1184.930 19.38667 3.80e-13 -20.08574 -19.36967 -19.79509 
4 1203.038 32.12151* 3.25e-13* -20.24414* -19.31325 -19.86629* 
5 1209.859 11.74336 3.38e-13 -20.20624 -19.06053 -19.74120 
6 1213.612 6.267124 3.72e-13 -20.11500 -18.75447 -19.56276 
7 1218.061 7.195283 4.05e-13 -20.03584 -18.46049 -19.39642 
8 1228.529 16.38470 3.97e-13 -20.06137 -18.27120 -19.33475 

Note: The star indicates lag order selected by the criterion. The criterion include the sequential modified 
likelihood ratio (LR) test statistic (each test at 5% level), the final prediction error (FPE), the Akaike 
information criterion (AIC), the Schwarz information criterion (SIC), and the Hannan-Quinn information 
criterion (HQIC). 

 
 
 
Table 2: Johansen Cointegration Tests 
 
Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  
No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.191438  36.95976  29.79707  0.0063 
At most 1  0.064056  11.46000  15.49471  0.1847 
At most 2  0.028875  3.516001  3.841466  0.0608 

Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
Hypothesized  Max-Eigen 0.05  
No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.191438  25.49976  21.13162  0.0114 
At most 1  0.064056  7.943997  14.26460  0.3844 
At most 2  0.028875  3.516001  3.841466  0.0608 

Note: The trace and maximum eigen-value tests both indicate one cointegrating 
vector at the 5-percent level. 

 
*  denotes rejection of the hypothesis at the 0.05 level 
** MacKinnon-Haug-Michelis (1999) p-values 
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Table 3: Granger Temporal Causality Tests 
 
Dependent variable: D(lnPLA)  

Excluded χ2 df Prob. 
D(lnPLV)  1.910253 1  0.1669 
D(lnPPH)  0.023862 1  0.8772 

All  1.922211 2  0.3825 
Dependent variable: D(lnPLV)  

Excluded χ2 df Prob. 
D(lnPLA)  8.442305 1  0.0037 
D(lnPPH)  0.009186 1  0.9236 

All  10.88809 2  0.0043 
Dependent variable: D(lnPPH)  

Excluded χ2 df Prob. 
D(lnPLA)  0.708430 1  0.4000 
D(lnPLV)  10.99597 1  0.0009 

All  20.42951 2  0.0000 
Note: D equals the first difference operator, ln stands for the natural logarithm, and PLA, 

PLV, and PPH equal the real home price indexes in Los Angeles, Las Vegas, and 
Phoenix, respectively. χ2 equals the chi-squared statistic, df equals the number of 
degrees of freedom, and Prob. equals the probability of insignificance. 
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Table 4: Forecast Results for Los Angeles 

  RMSEs 
Parameterization Models 1 2 3 4 Average 

VAR  0.002356 0.088082 0.220955 0.258075 0.142367 
  VEC 0.021484 0.031859 0.092055 0.081208 0.056652 

BVAR 0.001749 0.086686 0.218564 0.254763 0.14044 
BVEC 0.021475 0.031655 0.092104 0.073687 0.05473 
Causality BVAR  0.001095 0.080932 0.208305 0.239763 0.132524 
Spatial BVAR  0.001963 0.087144 0.219394 0.255942 0.141111 
Causality BVEC  0.021525 0.032473 0.095811 0.080522 0.057583 

w=0.3, d=0.5 

Spatial BVEC 0.021464 0.031604 0.091767 0.0732 0.054509 
BVAR 0.000174 0.08311 0.212534 0.246499 0.135579 
BVEC 0.021557 0.030879 0.092068 0.074064 0.054642 
Causality BVAR  0.003021 0.077191 0.20125 0.229086 0.127637 
Spatial BVAR  0.000913 0.084657 0.215304 0.250409 0.137821 
Causality BVEC  0.021784 0.031897 0.099015 0.087188 0.059971 

w=0.2, d=1 

Spatial BVEC 0.021426 0.030864 0.09109 0.07262 0.054 
BVAR 0.004474 0.072855 0.195783 0.224005 0.124279 
BVEC 0.021574 0.028754 0.091612 0.074864 0.054201 
Causality BVAR  0.001705 0.080587 0.20612 0.235084 0.130874 
Spatial BVAR  0.00289 0.075835 0.201064 0.231422 0.127803 
Causality BVEC  0.02041 0.033229 0.104824 0.097478 0.063986 

w=0.1, d=1 

Spatial BVEC 0.021267 0.02838 0.088716 0.070581 0.052236 
BVAR 0.00402 0.073906 0.197566 0.226481 0.125493 
BVEC 0.021977 0.028326 0.091127 0.073915 0.053836 
Causality BVAR  0.00652 0.069507 0.18848 0.211431 0.118984 
Spatial BVAR  0.002215 0.077429 0.20369 0.235004 0.129585 
Causality BVEC  0.022319 0.029651 0.09841 0.087776 0.059539 

w=0.2, d=2 

Spatial BVEC 0.021374 0.02862 0.089376 0.071166 0.052634 
BVAR 0.013584 0.054179 0.168069 0.189412 0.106311 
BVEC 0.022129 0.023876 0.088433 0.072849 0.051822 
Causality BVAR  0.009299 0.063384 0.179251 0.199808 0.112936 
Spatial BVAR  0.011731 0.056881 0.172534 0.195458 0.109151 
Causality BVEC  0.019994 0.030473 0.102467 0.095455 0.062097 

w=0.1, d=2 

Spatial BVEC 0.021195 0.023058 0.084782 0.067271 0.049077 
RBVAR Causality1 0.064297 0.114092 0.279637 0.358194 0.204055 
RBVAR Causality2 0.064297 0.114675 0.280637 0.359171 0.204695 
RBVAR Spatial1 0.064297 0.114675 0.280637 0.359171 0.204695 
RBVAR Spatial2 0.1283 0.054725 0.208176 0.278513 0.167428 
RBVEC Causality1 0.045523 0.461615 0.1023 0.060789 0.167557 
RBVEC Causality2 0.045523 0.462689 0.100334 0.060934 0.16737 
RBVEC Spatial1 0.137511 0.190315 0.004198 0.170303 0.125582 

σc=0.1, η=8, θ=0.5 

RBVEC Spatial2 0.121492 0.263264 0.020017 0.150712 0.138871 
Note: VAR and VEC refer to vector autoregressive and vector error-correction models. BVAR and BVEC refer 

to Bayesian VAR and VEC models. The text discusses the various priors and parameterizations. RMSE 
means root mean square error. The entries measure the average RMSE across all forecasts at each horizon – 
one-, two-, three-, and four-quarter-ahead forecasts. The column Average computes the average RMSE 
across the one-, two-, three-, and four-quarter-ahead forecast RMSEs. 
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Table 5: Forecast Results for Las Vegas 
  RMSEs 
Parameterization Models 1 2 3 4 Average 

VAR  0.078444 0.04269 0.029767 0.041256 0.048039 
  VEC 0.006589 0.136091 0.148878 0.146749 0.109577 

BVAR 0.079121 0.043777 0.03139 0.043041 0.049332 
BVEC 0.00685 0.132051 0.144884 0.119994 0.100945 
Causality BVAR  0.084955 0.05189 0.043126 0.056006 0.058994 
Spatial BVAR 0.078615 0.04304 0.030257 0.041755 0.048417 
Causality BVEC  0.007094 0.129858 0.139978 0.119237 0.099042 

w=0.3, d=0.5 

Spatial BVEC 0.006443 0.135484 0.14826 0.123195 0.103346 
BVAR 0.080869 0.046702 0.035636 0.047759 0.052742 
BVEC 0.008045 0.120528 0.133617 0.109972 0.093041 
Causality BVAR  0.088254 0.056899 0.050216 0.063556 0.064731 
Spatial BVAR 0.079221 0.044233 0.031877 0.043461 0.049698 
Causality BVEC  0.007731 0.122886 0.131449 0.115325 0.094347 

w=0.2, d=1 

Spatial BVEC 0.006405 0.132535 0.145469 0.121116 0.101381 
BVAR 0.084759 0.053288 0.045101 0.058026 0.060293 
BVEC 0.01044 0.094044 0.108185 0.088073 0.075185 
Causality BVAR  0.086554 0.055231 0.048263 0.060856 0.062726 
Spatial BVAR  0.081062 0.047949 0.036904 0.048647 0.053641 
Causality BVEC  0.007743 0.11545 0.127988 0.116988 0.092042 

w=0.1, d=1 

Spatial BVEC 0.005808 0.12413 0.137804 0.116374 0.096029 
BVAR 0.085178 0.054051 0.045931 0.059175 0.061084 
BVEC 0.01158 0.091931 0.105437 0.083712 0.073165 
Causality BVAR  0.09097 0.061821 0.056548 0.070289 0.069907 
Spatial BVAR 0.081347 0.048284 0.037249 0.049193 0.054018 
Causality BVEC  0.008918 0.112864 0.121747 0.107675 0.087801 

w=0.2, d=2 

Spatial BVEC 0.007147 0.120896 0.134603 0.111457 0.093526 
BVAR 0.090525 0.064068 0.059548 0.073853 0.071999 
BVEC 0.015346 0.05478 0.070029 0.052046 0.04805 
Causality BVAR  0.088148 0.059505 0.053176 0.065699 0.066632 
Spatial BVAR 0.086208 0.057752 0.049651 0.062084 0.063924 
Causality BVEC  0.011154 0.095126 0.112308 0.102702 0.080322 

w=0.1, d=2 

Spatial BVEC 0.007735 0.095709 0.111545 0.092854 0.076961 
RBVAR Causality1 0.065611 0.199103 0.298367 0.335746 0.224707 
RBVAR Causality2 0.056531 0.198103 0.300921 0.341953 0.224377 
RBVAR Spatial1 0.064987 0.223822 0.323479 0.37275 0.246259 
RBVAR Spatial2 0.066808 0.229459 0.336238 0.38459 0.254274 
RBVEC Causality1 0.059485 0.078669 0.116412 0.164565 0.104782 
RBVEC Causality2 0.056374 0.02368 0.125339 0.176229 0.095406 
RBVEC Spatial1 0.059444 0.124821 0.094246 0.131503 0.102504 

σc=0.1, η=8, θ=0.5 

RBVEC Spatial2 0.062531 0.116138 0.101992 0.142064 0.105681 
Note: See Table 4. 
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Table 6: Forecast Results for Phoenix 

  RMSEs 
Parameterization Models 1 2 3 4 Average 

VAR  0.074832 0.100296 0.095718 0.126134 0.099245 
  VEC 0.073432 0.129337 0.138516 0.163259 0.126136 

BVAR 0.075224 0.100462 0.095971 0.126325 0.099495 
BVEC 0.073843 0.129165 0.138505 0.206787 0.137075 
Causality BVAR  0.079603 0.108269 0.104137 0.134589 0.10665 
Spatial BVAR 0.075068 0.100542 0.09608 0.126446 0.099534 
Causality BVEC  0.074959 0.126639 0.134927 0.200671 0.134299 

w=0.3, d=0.5 

Spatial BVEC 0.073723 0.128984 0.138321 0.206597 0.136906 
BVAR 0.075877 0.10041 0.096023 0.126148 0.099615 
BVEC 0.074428 0.129873 0.139126 0.207078 0.137626 
Causality BVAR  0.084352 0.115085 0.111587 0.141669 0.113173 
Spatial BVAR 0.075558 0.10104 0.096828 0.127053 0.10012 
Causality BVEC  0.077399 0.128404 0.134175 0.197235 0.134303 

w=0.2, d=1 

Spatial BVEC 0.074122 0.128898 0.13835 0.206199 0.136892 
BVAR 0.104364 0.101909 0.097972 0.127298 0.107886 
BVEC 0.125753 0.130867 0.139875 0.206002 0.150624 
Causality BVAR  0.08697 0.116768 0.114216 0.144162 0.115529 
Spatial BVAR 0.077482 0.102932 0.099572 0.129275 0.102315 
Causality BVEC  0.083161 0.123299 0.124886 0.179133 0.12762 

w=0.1, d=1 

Spatial BVEC 0.076081 0.127809 0.13774 0.203571 0.1363 
BVAR 0.077517 0.100184 0.095874 0.125234 0.099702 
BVEC 0.074754 0.13344 0.141858 0.209966 0.140004 
Causality BVAR  0.088677 0.120144 0.117114 0.145979 0.117979 
Spatial BVAR 0.07672 0.102174 0.098539 0.128334 0.101442 
Causality BVEC  0.078368 0.132964 0.137335 0.200364 0.137258 

w=0.2, d=2 

Spatial BVEC 0.074313 0.130621 0.139723 0.207425 0.138021 
BVAR 0.085407 0.10511 0.100817 0.127966 0.104825 
BVEC 0.07733 0.136097 0.143635 0.209612 0.141669 
Causality BVAR  0.091197 0.118606 0.115586 0.14285 0.11706 
Spatial BVAR 0.081054 0.106144 0.103833 0.132269 0.105825 
Causality BVEC  0.083672 0.125198 0.12621 0.179663 0.128686 

w=0.1, d=2 

Spatial BVEC 0.076408 0.132238 0.140814 0.20636 0.138955 
RBVAR Causality1 0.004513 0.084711 0.158477 0.130565 0.094566 
RBVAR Causality2 0.004749 0.072686 0.145066 0.114462 0.084241 
RBVAR Spatial1 0.0059 0.041866 0.114944 0.068773 0.057871 
RBVAR Spatial2 0.014564 0.038689 0.104193 0.060713 0.05454 
RBVEC Causality1 0.028227 0.101913 0.208121 0.145082 0.120835 
RBVEC Causality2 0.035707 0.121426 0.208969 0.148627 0.128682 
RBVEC Spatial1 0.013979 0.039875 0.185631 0.119491 0.089744 

σc=0.1, η=8, θ=0.5 

RBVEC Spatial2 0.022113 0.073755 0.189474 0.125316 0.102665 
Note: See Table 4. 
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Table 7:  Forecast of the Real Housing Price Index: Los Angeles  
Quarters Actuals VAR VEC Optimal 

BVAR 
Optimal 
BVEC 

2005:Q4 377.5166 377.5166 377.5166 377.5166 377.5166 
2006:Q1 390.9894 402.3522 402.0597 403.0200 402.1154 
2006:Q2 398.2135 433.2707 416.7950 434.7338 416.9335 
2006:Q3 403.5069 470.9669 433.1485 473.3162 433.3638 
2006:Q4 405.6439* 516.7845 451.3739 520.0366 450.5531 
2007:Q1 401.5254 572.5970 471.7691 576.7335 469.5853 
2007:Q2 398.3245 640.9297 494.6857 645.9269 489.6644 
2007:Q3 391.1110 725.1947 520.5412 731.0308 511.8802 
2007:Q4 376.7706 830.0309 549.8346 836.6817 535.5034 
2008:Q1 350.6978 961.8065 583.1659 969.2328 561.6401 
2008:Q2 321.4719 1129.3723 621.2610 1137.4966 589.6411 

Note: One- to ten-quarter-ahead real housing price index forecasts. The star identifies the turning point. 
Bold numbers reflect the best forecasts. The Actual column gives the actual data. The Optimal 
models come from the best performing model in Table 4. 

 
Table 8:  Forecast of the Real Housing Price Index: Las Vegas 

Quarters 
 

Actuals 
 

VAR 
 

VEC 
 

Optimal 
BVAR 

Optimal 
BVEC 

2005:Q4 282.0519 282.0519 282.0519 282.0519 282.0519 
2006:Q1 289.5116 297.5824 297.3371 297.5839 297.4738 
2006:Q2 289.6797 315.4873 312.8668 315.4916 314.3471 
2006:Q3 290.6893 336.1310 330.0674 336.1392 333.1445 
2006:Q4 292.2187* 360.1764 349.1903 360.1890 353.1478 
2007:Q1 288.1104 388.3283 370.5339 388.3458 375.4483 
2007:Q2 281.6813 421.4800 394.4539 421.5029 399.3427 
2007:Q3 274.4277 460.7782 421.3763 460.8075 426.0163 
2007:Q4 263.3262 507.7027 451.8145 507.7394 454.7897 
2008:Q1 243.3095 564.1813 486.3898 564.2266 486.9704 
2008:Q2 217.7319 632.7524 525.8589 632.8080 521.9175 

Note: See Table 7. The Optimal models come from the best performing model in Table 5. 
 
Table 9:  Forecast of the Real Housing Price Index: Phoenix 

Quarters Actuals VAR VEC Optimal 
BVAR 

Optimal 
BVEC 

2005:Q4 266.3477 266.3477 266.3477 266.3477 266.3477 
2006:Q1 275.8913 284.9617 287.0331 276.9951 297.5065 
2006:Q2 280.0896 307.1025 303.6691 309.8393 278.9715 
2006:Q3 281.7792 332.7481 322.5838 330.5377 287.0832 
2006:Q4 283.9403* 362.6791 344.1586 347.4027 314.0445 
2007:Q1 280.4600 397.9571 368.8553 350.4730 362.5610 
2007:Q2 276.5298 439.9076 397.2370 386.6116 345.4533 
2007:Q3 271.3676 490.2433 429.9940 402.5804 351.8249 
2007:Q4 263.5439 551.2117 467.9784 412.7865 394.2349 
2008:Q1 251.8645 625.7996 512.2481 405.3843 479.3154 
2008:Q2 235.7252 718.0279 564.1266 441.0331 471.3939 

Note: See Table 7. The Optimal models come from the best performing model in Table 6. 
 



Table 10: Recursive Forecasts of the Real Housing Price Index: Los Angeles 

Quarter 
 

Actual 
 

Diagonal 
 

Forecast 
1 

Forecast 
2 

Forecast 
3 

Forecast  
4 

Forecast  
5 

Forecast 
6 

Forecast 
7 

Forecast 
8 

Forecast 
9 

Forecast 
10 

2005:Q4 377.5166 377.5166           
2006:Q1 390.9894 402.1154 402.1154          
2006:Q2 398.2135 412.5039 416.9335 412.5039         
2006:Q3 403.5069 412.7654 433.3638 426.6052 412.7654        
2006:Q4 405.6439* 414.3912 450.5531 441.9711 422.6916 414.3912*       
2007:Q1 401.5254 407.5248 469.5853 457.9749 433.2754 421.7162 407.5248†      
2007:Q2 398.3245 398.7056 489.6644 475.4030 444.1630 429.3809 407.2615 398.7056     
2007:Q3 391.1110 395.6097 511.8802 493.6764 455.7652 437.2031 406.6742 397.7281 395.6097    
2007:Q4 376.7706 386.2894 535.5034 513.5718 467.7519 445.3857 406.0646 397.1972 395.1479 386.2894   
2008:Q1 350.6978 366.6303 561.6401 534.5652 480.5196 453.7590 405.4656 396.7122 395.1598 385.6374 366.6303  
2008:Q2 321.4719 331.3388 589.6411 557.4264 493.7649 462.5154 404.8825 396.2724 395.2414 385.8262 365.1201 331.3388 

Note: The Actual column gives the actual data. The Diagonal column gives the one-quarter-ahead forecast for Forecast 1, 2, …,, and 10. Forecast 1 estimates 
the model through 2005:Q4 and then forecasts one-, two-, ..,, and ten-quarters ahead. Forecast 2 estimates the model through 2006:Q1 and then forecasts 
one-, two-, …, and nine-quarters ahead, and so on. Finally, Forecast 10 estimates the model through 2008:Q1 and then forecasts one-quarter ahead. 

 
Table 11: Las Vegas 

Quarter 
 

Actual 
 

Diagonal 
 

Forecast 
1 

Forecast  
2 

Forecast 
3 

Forecast 
4 

Forecast 
5 

Forecast 
6 

Forecast 
7 

Forecast 
8 

Forecast  
9 

Forecast 
10 

2005:Q4 282.0519 282.0519           
2006:Q1 289.5116 297.5824 297.5824          
2006:Q2 289.6797 305.7904 315.4873 305.7904*         
2006:Q3 290.6893 303.0592 336.1310 322.8715 303.0592        
2006:Q4 292.2187* 301.1435 360.1764 342.2867 316.4940 301.1435       
2007:Q1 288.1104 300.2653 388.3283 364.6742 331.4168 311.8731 300.2653      
2007:Q2 281.6813 293.0282 421.4800 390.5373 348.2562 323.7356 308.7708 293.0282     
2007:Q3 274.4277 284.6283 460.7782 420.5474 367.2575 336.9079 318.1989 298.1557 284.6283    
2007:Q4 263.3262 274.7753 507.7027 455.5541 388.7349 351.5190 328.5949 303.9814 287.8426 274.7753   
2008:Q1 243.3095 260.2166 564.1813 496.6275 413.0761 367.7257 340.0161 310.4200 291.7451 275.6238 260.2166†  
2008:Q2 217.7319 234.3917 632.7524 545.1260 440.7519 385.7180 352.5374 317.4574 296.1465 277.1921 257.7795 234.3917 

Note: See Table 10. 
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Table 12: Phoenix 

Quarter 
 

Actual 
 

Diagonal 
 

Forecast 
1 

Forecast  
2 

Forecast 
3 

Forecast 
4 

Forecast 
5 

Forecast 
6 

Forecast 
7 

Forecast 
8 

Forecast 
9 

Forecast 
10 

2005:Q4 266.3477 266.3477           
2006:Q1 275.8913 276.9951 276.9951          
2006:Q2 280.0896 310.1822 309.8393 310.1822*         
2006:Q3 281.7792 306.8161 330.5377 331.8392 306.8161        
2006:Q4 283.9403* 304.7925 347.4027 350.1096 322.1683 304.7925       
2007:Q1 280.4600 295.0095 350.4730 352.4698 329.0192 310.9655 295.0095      
2007:Q2 276.5298 286.0993 386.6116 392.6300 327.3146 313.5200 298.8613 286.0993     
2007:Q3 271.3676 281.1712 402.5804 411.2223 356.3408 312.4512 301.4895 289.8576 281.1712    
2007:Q4 263.5439 276.2977 412.7865 424.2500 369.7165 337.8164 304.2295 294.787 286.534 276.2977   
2008:Q1 251.8645 263.4873 405.3843 415.8885 372.5957 342.7264 317.2396 293.1513 286.3704 277.3012 263.4873  
2008:Q2 235.7252 249.695 441.0331 458.0949 365.6043 343.6502 321.8623 301.1827 285.026 277.5153 265.2239 249.695 

Note: See Table 10. 
 
Table 13: Las Vegas 

Quarter Actual Diagonal Forecast 
1 

Forecast 
2 

Forecast 
3 

Forecast 
4 

Forecast 
5 

Forecast 
6 

Forecast 
7 

Forecast 
8 

Forecast 
9 

Forecast 
10 

2005Q4 282.0519 282.0519           
2006Q1 289.5116 297.4404 297.4404          
2006Q2 289.6797 306.2669 314.3403 306.2669         
2006Q3 290.6893 302.2734 333.1195 322.8494 302.2734        
2006Q4 292.2187* 299.5712 353.1832 341.0358 313.7618 299.5712       
2007Q1 288.1104 295.1889 375.4914 360.4126 325.9868 307.4681 295.1889      
2007Q2 281.6813 289.5343 399.3006 381.6805 338.7661 315.5731 297.2350 289.5343     
2007Q3 274.4277 281.7085 425.9906 404.3896 352.3709 323.9664 299.0198 290.4023 281.7085    
2007Q4 263.3262 273.9050 454.7786 429.4375 366.5220 332.6596 300.6769 291.6084 281.9681 273.9050   
2008Q1 243.3095 260.8555 486.9675 456.2470 381.5926 341.6646 302.3431 292.8869 282.6832 273.4639 260.8555  
2008Q2 217.7319 237.1920 521.9153 485.8475 397.3745 350.9942 304.0885 294.1711 283.4654 273.8420 259.2985 237.1920 

Note: See Table 10. 
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Figure 1: Housing Price Indexes: Las Vegas, Los Angeles, and Phoenix  

 


